

Students should develop their mathematical skills, and apply these well across the curriculum

Long Multiplication

X	50	4
30	1500	120
2	100	8

Measuring Accurately

Ignore the small gap at the start of the ruler! Start from the first mark.

This line measures 9.5cm or 95mm

Estimate the size of the angle first. This one is bigger than a right angle so it must be between 90° and 180°

Make sure the centre of the protractor is on the corner

This line goes through zero on the outside scale

Reading from the outside scale this angle measures 139°

Division

368

Answer 368

Finding the Mean (Average)

Question: Find the mean of these numbers 6, 10, 14, 7, 18, 5

First add up all the numbers: 6 + 10 + 14 + 7 + 18 + 5 = 60Divide by how many numbers there are: $60 \div 6 = 10$

Calculating a Percentage

Without a 10% of 80=8 calculator 10% of 80=8 10% of 80=8 5% of 80=4 28

With a calculator 80x35÷100=28

The numbers up the side should be in line with the lines on the page

If these labels are words you should leave gaps between the bars

Always use a pencil and ruler to draw the bar chart

Each axis should be

clearly labelled

Working out the Angles for a Pie Chart

The angle of a pie adds up to 360° There are 24 people altogether $360 \div 24 = 15$ so each person is 1% of the pie

Colour	No. of People	Angle	
Red Blue Silver Black Other	5 3 10 2 4	5x15=75° 3x15=45° 10x15=150° 2x15=30° 4x15=60°	
	24	360 Check the an	gles add up to 360

Line Graph

A Line Graph is often used when looking at something happening over a period of time

It is also often used in science

Frequency Diagram

A Frequency Diagram looks similar to a Bar Chart except that the scale along the x axis is continuous and there are no gaps between the bars

Scattergraph

A Scattergraph can be used to see if there is any correlation (connection) between two sets

A line of best fit can be drawn to help make predictions

Metric Units

